5424-19-1Relevant articles and documents
Aromatization as an Impetus to Harness Ketones for Metallaphotoredox-Catalyzed Benzoylation/Benzylation of (Hetero)arenes
Chen, Ting-Wei,Cheng, Cheng-Ku,Chiu, Cheng-Chau,Huang, Pin-Gong,Lee, Shao-Chi,Lee, Yi-Hsin,Li, Li-Yun,Liao, Hsuan-Hung,Lin, Heng-Bo,Tsai, Zong-Nan,Tsao, Yong-Ting,Yang, Chung-Hsin
, (2022/01/04)
Herein we report ketones as feedstock materials in radical cross-coupling reactions under Ni/photoredox dual catalysis. In this approach, simple condensation first converts ketones into prearomatic intermediates that then act as activated radical sources for cross-coupling with aryl halides. Our strategy enables the direct benzylation/benzoylation of (hetero)arenes under mild reaction conditions with high functional group tolerance.
Photo-induced oxidative cleavage of C-C double bonds for the synthesis of biaryl methanoneviaCeCl3catalysis
Xie, Pan,Xue, Cheng,Du, Dongdong,Shi, SanShan
supporting information, p. 6781 - 6785 (2021/08/20)
A Ce-catalyzed strategy is developed to produce biaryl methanonesviaphotooxidative cleavage of C-C double bonds at room temperature. This reaction is performed under air and demonstrates high activity as well as functional group tolerance. A synergistic Ce/ROH catalytic mechanism is also proposed based on the experimental observations. This protocol should be the first successful Ce-catalyzed photooxidation reaction of olefins with air as the oxidant, which would provide inspiration for the development of novel Ce-catalyzed photochemical synthesis processes.
Decatungstate-mediated solar photooxidative cleavage of CC bonds using air as an oxidant in water
Du, Dongdong,Luo, Junfei,Shi, Sanshan,Xie, Pan,Xue, Cheng
, p. 5936 - 5943 (2021/08/23)
With the increasing attention for green chemistry and sustainable development, there has been much interest in searching for greener methods and sources in organic synthesis. However, toxic additives or solvents are inevitably involved in most organic transformations. Herein, we first report the combination of direct utilization of solar energy, air as the oxidant and water as the solvent for the selective cleavage of CC double bonds in aryl olefins. Various α-methyl styrenes, diaryl alkenes as well as terminal styrenes are well tolerated in this green and sustainable strategy and furnished the desired carbonyl products in satisfactory yields. Like heterogeneous catalysis, this homogeneous catalytic system could also be reused and it retains good activity even after repeating three times. Mechanism investigations indicated that both O2- and 1O2 were involved in the reaction. Based on these results, two possible mechanisms, including the electron transfer pathway and the energy transfer pathway, were proposed.
A Fast and General Route to Ketones from Amides and Organolithium Compounds under Aerobic Conditions: Synthetic and Mechanistic Aspects
Ghinato, Simone,Territo, Davide,Maranzana, Andrea,Capriati, Vito,Blangetti, Marco,Prandi, Cristina
, p. 2868 - 2874 (2021/01/21)
We report that the nucleophilic acyl substitution reaction of aliphatic and (hetero)aromatic amides by organolithium reagents proceeds quickly (20 s reaction time), efficiently, and chemoselectively with a broad substrate scope in the environmentally responsible cyclopentyl methyl ether, at ambient temperature and under air, to provide ketones in up to 93 % yield with an effective suppression of the notorious over-addition reaction. Detailed DFT calculations and NMR investigations support the experimental results. The described methodology was proven to be amenable to scale-up and recyclability protocols. Contrasting classical procedures carried out under inert atmospheres, this work lays the foundation for a profound paradigm shift of the reactivity of carboxylic acid amides with organolithiums, with ketones being straightforwardly obtained by simply combining the reagents under aerobic conditions and with no need of using previously modified or pre-activated amides, as recommended.
Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy
Deng, Xin,Qian, Rongrong,Zhou, Hongwei,Yu, Lei
supporting information, p. 1029 - 1032 (2020/10/23)
Irradiated by visible light, the recyclable (PhTe)2-catalyzed oxidative deoximation reaction could occur under mild conditions. In comparison with the thermo reaction, the method employed reduced catalyst loading (1 mol% vs. 2.5 mol%), but afforded elevated product yields with expanded substrate scope. This work demonstrated that for the organotellurium-catalyzed reactions, visible light might be an even more precise driving energy than heating because it could break the Te–Te bond accurately to generate the active free radical catalytic intermediates without damaging the fragile substituents (e.g., heterocycles) of substrates. The use of O2 instead of explosive H2O2 as oxidant affords safer reaction conditions from the large-scale application viewpoint.
Visible light-driven direct synthesis of ketones from aldehydes via C[sbnd]H bond activation using NiCu nanoparticles adorned on carbon nano onions
Heydari, Akbar,Khorsandi, Zahra,Metkazini, S. Fatemeh Mohammadi,Varma, Rajender S.
, (2021/11/09)
An efficient, straightforward and high yield synthetic approach is described for the direct synthesis of diaryl ketones via the C[sbnd]H bond activation of aldehydes using NiCu nanoparticles adorned on carbon nano onions as an efficient heterogeneous catalyst under the irradiation of a mercury-vapor lamp (400 w) via simple workup. This C[sbnd]H bond activation reaction appears simple and convenient with a wide substrate scope in view of its excellent synthesis prowess as illustrated in the preparation of new-approved anti-Alzheimer and anti-HIV medicinal compounds under greener and mild reaction conditions; catalyst could be recycled and reused five times without any loss of catalytic activity.
Half-sandwich ruthenium complex containing phenyl benzoxazole structure as well as preparation method and application of half-sandwich ruthenium complex
-
Paragraph 0049-0052, (2021/04/14)
The invention relates to a half-sandwich ruthenium complex containing a phenyl benzoxazole structure as well as a preparation method and application of the half-sandwich ruthenium complex. The ruthenium complex has the following structure as shown in the specification. The preparation method comprises the steps of dissolving phenyl benzoxazole, [CymRuCl2] 2 and sodium acetate in methanol at room temperature, heating the system, and continuing to react; and after the reaction is finished, standing, filtering, carrying out reduced pressure pumping on the solvent, carrying out column chromatography separation on the obtained crude product to obtain the red half-sandwich ruthenium complex containing the phenyl benzoxazole structure, and applying the red half-sandwich ruthenium complex to catalysis of oxidation of alkyl pyridine compounds to prepare nitrogen heterocyclic ketone compounds. Compared with the prior art, the preparation method provided by the invention is simple and green, the catalytic oxidation reaction can be carried out under mild conditions, and the catalyst has high stability and is not sensitive to air and water.
Synthesis of biaryl ketones by arylation of Weinreb amides with functionalized Grignard reagents under thermodynamic controlvs.kinetic control ofN,N-Boc2-amides
Li, Guangchen,Szostak, Michal
supporting information, p. 3827 - 3831 (2020/06/03)
A highly efficient method for chemoselective synthesis of biaryl ketones by arylation of Weinreb amides (N-methoxy-N-methylamides) with functionalized Grignard reagents is reported. This protocol offers rapid entry to functionalized biaryl ketones after Mg/halide exchange with i-PrMgCl·LiCl under operationally-simple and practical reaction conditions. The scope of the method is highlighted in >40 examples, including bioactive compounds and pharmaceutical derivatives. Collectively, this transition-metal-free approach offers a major advantage over the recently established cross-coupling of amides by oxidative addition of N-C(O) bonds. Considering the utility of amide acylation reactions in modern synthesis, we expect that this method will be of broad interest.
Ruthenium-Catalyzed Dehydrogenation of Alcohols with Carbodiimide via a Hydrogen Transfer Mechanism
Sueki, Shunsuke,Matsuyama, Mizuki,Watanabe, Azumi,Kanemaki, Arata,Katakawa, Kazuaki,Anada, Masahiro
, p. 4878 - 4885 (2020/06/02)
Ruthenium-catalyzed oxidative dehydrogenation of alcohols using carbodiimide as an efficient hydrogen acceptor has been developed. The protocol exhibits wide substrate scope with good to excellent yields. The results of the kinetic analysis indicated that the reaction mechanism includes the hydrogen transfer process and that the addition of carbodiimide is essential for the reaction system, and the resulting amidine also could react as a hydrogen acceptor.
Compound, organic electroluminescent device and electronic device
-
Paragraph 0139-0141, (2020/04/17)
The invention belongs to the technical field of OLED and provides a compound with a structure shown in the chemical formula 1, wherein L1 and L2 are respectively and independently selected from a single bond, C1-C20 alkylene, C3-C20 cycloalkylene, C6-C30 arylene and C3-C30 heteroarylene, Ar1 and Ar2 are each independently selected from C1-C20 alkyl, C-C20 cycloalkyl, C6-C30 aryl, C3-C30 heteroaryl, and Si (R1R2R3), and R1, R2, and R3 are each independently selected from C1-C20 alkyl and C6-C30 aryl. The invention provides the compound taking a phenanthrene fused ring derivative as a parent nucleus. Compound molecules have very strong plane ductility. The strong planar ductility of compound molecules enhances the rigidity of the material and prolongs the service life of the material. Besides, the molecular parent nucleus and the aryl substituent are easy to form a large conjugated system, a plurality of nitrogen atom centers exist at the same time, the intramolecular electron cloud density is increased, so that the HOMO energy level can be further adjusted to a proper level, the electron mobility and the transition rate are further improved, and thus the organic electroluminescent device has high device efficiency. The invention further provides an organic electroluminescent device and an electronic device.